Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Water is an essential and often limiting resource that pervades all aspects of animal ecology. Yet, water economics are grossly understudied relative to foraging and predation, leaving ecologists ill‐equipped to predict how the intensifying disruption of hydrological regimes worldwide will impact communities. For savanna herbivores, reliance on surface water can increase exposure to predators and competitors, and thus strategies that reduce the need to drink are advantageous. Yet, the extent to which increasing dietary water intake while decreasing water loss enables animals to forego drinking remains unknown.We studied water budgets of sympatric African savanna antelopes that differ in size, bushbuck (Tragelaphus sylvaticus, ~35 kg) and kudu (T. strepsiceros, ~140 kg). We hypothesized that both species compensate for seasonally declining water availability by increasing consumption of moisture‐rich plants and reducing faecal water loss, and that these adjustments are sufficient for small‐bodied—but not large‐bodied—herbivores to avoid spending more time near permanent water sources as the dry season advances. We tested our predictions using temporally explicit data on antelope movements, diets, plant traits and drinking behaviour in Gorongosa National Park, Mozambique.Water content declined between the early and late dry seasons in roughly half of plant taxa consumed by antelope. Although both species reduced faecal water loss and shifted their diets towards relatively moisture‐rich plants as the dry season progressed, dietary water intake still declined. Contrary to expectation, kudu reduced selection for surface water in the late dry season without adjusting total time spent drinking, whereas bushbuck increased selection for surface water.We developed a generalizable approach for parsing the importance of dietary and surface water for large herbivores. Our results underscore that variation in surface‐water dependence is a key organizing force in herbivore communities, that simple allometric predictions about the behavioural and ecological consequences of this variation are unreliable. Understanding wildlife water economics is a research frontier that will be essential for predicting changes in species distribution and community composition as temperatures rise and droughts intensify.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Extreme weather events perturb ecosystems and increasingly threaten biodiversity1. Ecologists emphasize the need to forecast and mitigate the impacts of these events, which requires knowledge of how risk is distributed among species and environments. However, the scale and unpredictability of extreme events complicate risk assessment1–4—especially for large animals (megafauna), which are ecologically important and disproportionately threatened but are wide-ranging and difficult to monitor5. Traits such as body size, dispersal ability and habitat affiliation are hypothesized to determine the vulnerability of animals to natural hazards1,6,7. Yet it has rarely been possible to test these hypotheses or, more generally, to link the short-term and long-term ecological effects of weather-related disturbance8,9. Here we show how large herbivores and carnivores in Mozambique responded to Intense Tropical Cyclone Idai, the deadliest storm on record in Africa, across scales ranging from individual decisions in the hours after landfall to changes in community composition nearly 2 years later. Animals responded behaviourally to rising floodwaters by moving upslope and shifting their diets. Body size and habitat association independently predicted population-level impacts: five of the smallest and most lowland-affiliated herbivore species declined by an average of 28% in the 20 months after landfall, while four of the largest and most upland-affiliated species increased by an average of 26%. We attribute the sensitivity of small-bodied species to their limited mobility and physiological constraints, which restricted their ability to avoid the flood and endure subsequent reductions in the quantity and quality of food. Our results identify general traits that govern animal responses to severe weather, which may help to inform wildlife conservation in a volatile climate.more » « less
-
Austin, A (Ed.)Sympatric large mammalian herbivore species differ in diet composition, both by eating different parts of the same plant and by eating different plant species. Various theories proposed to explain these differences are not mutually exclusive, but are difficult to reconcile and confront with data. Moreover, whereas several of these ideas were originally developed with reference to within-plant partitioning (i.e., consumption of different tissues), they may analogously apply to partitioning of plant species; this possibility has received little attention. Plant functional traits provide a novel window into herbivore diets and a means of testing multiple hypotheses in a unified framework. We used DNA metabarcoding to characterize the diets of 14 sympatric large-herbivore species in an African savanna and analyzed diet composition in light of 27 functional traits that we measured locally for 204 plant species. Plant traits associated with the deep phylogenetic split between grasses and eudicots formed the primary axis of resource partitioning, affirming the generality and importance of the grazer-browser spectrum. A secondary axis comprised plant traits relevant to herbivore body size. Plant taxa in the diets of large-bodied species were lower on average in digestible energy and protein, taller on average (especially among grazers), and tended to be higher in tensile strength, zinc, stem-specific density, and potassium (and lower in sodium, stem dry matter content, and copper). These results are consistent with longstanding hypotheses linking body size with forage quality and height, yet they also suggest the existence of undiscovered links between herbivore body size and a set of rarely considered food-plant traits. We also tested the novel hypothesis that the leaf economic spectrum (LES), a major focus in plant ecology, is an axis of resource partitioning in large-herbivore assemblages; we found that the LES was a minor axis of individual variation within a few species, but had little effect on interspecific dietary differentiation. Synthesis. These results identify key plant traits that underpin the partitioning of food-plant species in large-herbivore communities and suggest that accounting for multiple plant traits (and tradeoffs among them) will enable a deeper understanding of herbivore-plant interaction networks.more » « less
-
Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families—grasses and legumes—accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas.more » « less
-
Abstract Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual‐level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the “opportunity cost” of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high‐quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck,Tragelaphus sylvaticus) in an African floodplain‐savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS‐collared animals (range 6–14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual‐level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity‐of‐use index), and had higher‐quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual‐level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes.more » « less
-
The world’s largest carnivores are declining and now occupy mere fractions of their historical ranges. Theory predicts that when apex predators disappear, large herbivores should become less fearful, occupy new habitats, and modify those habitats by eating new food plants. Yet experimental support for this prediction has been difficult to obtain in large-mammal systems. Following the extirpation of leopards and African wild dogs from Mozambique’s Gorongosa National Park, forest-dwelling antelopes (bushbuck, Tragelaphus sylvaticus ) expanded into treeless floodplains, where they consumed novel diets and suppressed a common food plant (waterwort, Bergia mossambicensis ). By experimentally simulating predation risk, we demonstrate that this behavior was reversible. Thus, whereas anthropogenic predator extinction disrupted a trophic cascade by enabling rapid differentiation of prey behavior, carnivore restoration may just as rapidly reestablish that cascade.more » « less
-
Abstract Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution.In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct.We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them.Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.Synthesis. The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines.more » « less
-
Abstract Major disturbances can temporarily remove factors that otherwise constrain population abundance and distribution. During such windows of relaxed top‐down and/or bottom‐up control, ungulate populations can grow rapidly, eventually leading to resource depletion and density‐dependent expansion into less‐preferred habitats. Although many studies have explored the demographic outcomes and ecological impacts of these processes, fewer have examined the individual‐level mechanisms by which they occur. We investigated these mechanisms in Gorongosa National Park, where the Mozambican Civil War devastated large‐mammal populations between 1977 and 1992. Gorongosa’s recovery has been marked by proliferation of waterbuck (Kobus ellipsiprymnus), an historically marginal 200‐kg antelope species, which is now roughly 20‐fold more abundant than before the war. We show that after years of unrestricted population growth, waterbuck have depleted food availability in their historically preferred floodplain habitat and have increasingly expanded into historically avoided savanna habitat. This expansion was demographically skewed: mixed‐sex groups of prime‐age individuals remained more common in the floodplain, while bachelors, loners, and subadults populated the savanna. By coupling DNA metabarcoding and forage analysis, we show that waterbuck in these two habitats ate radically different diets, which were more digestible and protein‐rich in the floodplain than in savanna; thus, although individuals in both habitats achieved positive net energy balance, energetic performance was higher in the floodplain. Analysis of daily activity patterns from high‐resolution GPS‐telemetry, accelerometry, and animal‐borne video revealed that savanna waterbuck spent less time eating, perhaps to accommodate their tougher, lower‐quality diets. Waterbuck in savanna also had more ectoparasites than those in the floodplain. Thus, plasticity in foraging behavior and diet selection enabled savanna waterbuck to tolerate the costs of density‐dependent spillover, at least in the short term; however, the already poorer energetic performance of these individuals implies that savanna occupancy may become prohibitively costly as heterospecific competitors and predators continue to recover in Gorongosa. Our results suggest that behavior can provide a leading indicator of the onset of density‐dependent limitation and the likelihood of subsequent population decline, but that reliable inference hinges on understanding the mechanistic basis of observed behavioral shifts.more » « less
An official website of the United States government
